Synthesis and Magnetic Properties of Carbon Nanotube-iron Oxide Nanoparticle Composites for Hyperthermia: a Review
نویسندگان
چکیده
Magnetic inducing hyperthermia (MIH) is gaining great popularity due to its good targeted therapy and less side effects. Magnetic agents play a crucial role in this technique. As novel candidates, recently, carbon nanotubes/iron oxide nanoparticles composites have demonstrated great potential in MIH by combining the unique characteristics of carbon nanotubes with the excellent magnetic properties of iron oxides. In this article, we review the recent advances in the synthesis of these composites. The formation mechanisms of composites by methods such as co-precipitation, thermal decomposition, solvothermal method, in suit growth, electron beam evaporation and microwave plasma torch etc. are discussed and, with the emphases on the coercivity and saturation magnetization, the magnetic properties of composites are also summarized. Then the main challenges facing the clinic applications of these composites are addressed. It is likely that this summary can provide referential information for the synthesis of carbon nanotubes/iron oxide nanoparticles composites with improved magnetic property for MIH.
منابع مشابه
A Review of Recent Advances in Iron Oxide Nanoparticles as a Magnetic Agent in Cancer Diagnosis and Treatment
Aims In recent years, iron oxide nanoparticles have shown incredible possibilities in biomedical applications due to their non-toxic function in biological systems. Furthermore, these nanoparticles have multifunctional applications, such as antibacterial, antifungal, and anticancer effects in medicine due to their magnetic properties. Methods & Materials In this article, 49 articles related t...
متن کاملMagnetic hyperthermia and MRI relaxometry with dendrimer coated iron oxide nanoparticles
Introduction: Recently, some studies have focused on dendrimer nanopolymers as an MRI contrast agent or a vehicle for gene and drug delivery. Considering the suitable properties of these materials, they are appropriate candidates for coating iron oxide nanoparticles which are applied to magnetic hyperthermia. To the best of our knowledge, the novelty of this study is the inves...
متن کاملEffect of Carbon Nanotube and Surfactant on Processing, Mechanical, Electrical and EMI-Shielding of Epoxy Composites
Dispersing nanoparticles in a polymer matrix is intrinsically challenging due to unfavorable entropic interactions between the matrix and the nanoparticle. In this research dispersion of nanoparticles in polymer matrix was studied and the effect of dispersion on properties was investigated. The properties of polymer composite depend on the type, size, shape, concentration of nanoparticles, and ...
متن کاملComparison of two methods of carbon nanotube synthesis: CVD and supercritical process (A review)
A carbon nanotube (CNT) is a miniature cylindrical carbon structure that has hexagonalgraphite molecules attached at the edges. Nanotubes look like a powder or black soot, but they'reactually rolled-up sheets of graphene that form hollow strands with walls that are only one atom thick.Carbon nanotube has been one of the most actively explored materials in recent year(s) due to...
متن کاملOptimization of Iron Oxide Nanoparticle Preparation for Biomedical Applications by Using Box-Behenken Design
Magnetic nanoparticles can bind to different drug delivery systems and can be used for drug targeting to a specific organ by using an external magnetic field as well as used in hyperthermia by heating in alternating magnetic fields. The characteristics of iron oxide nanoparticles are significantly affected by particle size, shape and zeta potential, among which the particle size plays the most ...
متن کامل